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ABSTRACT
With advances in robot technology, interest in robotic e-learning
systems has increased. In some laboratories, experiments are
being conducted with humanoid robots as artificial tutors because
of their likeness to humans, the rich possibilities of using this type
of media, and the multimodal interaction capabilities of these
robots. The robot-assisted learning system, a special type of e-
learning system, aims to increase the learner’s concentration,
pleasure, and learning performance dramatically. However, very
few empirical studies have examined the effect on learning
performance of incorporating humanoid robot technology into e-
learning systems or people’s willingness to accept or adopt robot-
assisted learning systems. In particular, human likeness, the
essential characteristic of humanoid robots as compared with
conventional e-learning systems, has not been discussed in a
theoretical context. Hence, the purpose of this study is to propose
a theoretical model to explain the process of adoption of robot-
assisted learning systems. In the proposed model, human likeness
is conceptualized as a combination of media richness, multimodal
interaction capabilities, and para-social relationships; these factors
are considered as possible determinants of the degree to which
human cognition and affection are related to the adoption of
robot-assisted learning systems.
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1. Introduction

Advances in robotic technologies, especially developments that give robots humanoid
characteristics, have made use of robots more popular for many purposes, including
support of learning (Kanda, Hirano, Eaton, & Ishiguro, 2004). Over the past decade,
robots have been utilized as learning assistants in many educational settings, and their
pedagogical effects on learning have been investigated (Han & Kim, 2009; Kanda, Sato,
Saiwaki, & Ishiguro, 2007). Research has shown that humanoid robots provide learners
with a more natural interface in terms of human likeness, along with richer representation
and better understanding, than non-humanoid robots (Reeves et al., 2004, Tinwell et al.
2011). Developers of robot-based learning systems that incorporate use of humanoid
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robots expect that these characteristics may encourage learners and their parents to adopt
robot-based learning systems more readily.

However, the link between robot-assisted learning systems and their acceptance
requires investigation. In particular, no empirical studies have been conducted that fully
explain the effects of human likeness of robots on users’ propensity to adopt robot-assisted
learning systems. Although some researchers have examined users’ perceptions of
robots (Lee, Shin, & Sundar, 2011; Shibata, Wada, & Tanie, 2004), these studies focused
on individual impressions of specific robots. Moreover, the results of these studies do
not reflect the psychological influence on learners of the unique characteristics of robot
service via ubiquitous sensor networks in educational settings. Since use of humanoid
robot technology in learning settings is still in the initial stages of development, empirical
evidence about the effectiveness of humanoid robots will be very useful for researchers
and practitioners who want to develop more easily adoptable robot-assisted learning
systems.

In this study, an integrated theoretical model is proposed in which factors related to
human likeness that affect learners’ performance expectations and adoption of robot-
assisted learning systems are identified. Human likeness is examined in the context of
learning systems with reference to media richness (MR) theory (Daft & Lengel, 1986;
Liu, Liao, & Pratt, 2009) and para-social relationship (PSR) theory (Levy, 1979; Rubin,
Perse, & Powell, 1985) in order to elucidate users’ perceptions of humanoid robots. To
bridge the gap between perceptions of human likeness and adoption of robot-assisted
learning systems, flow theory (Csikszentmihalyi & Csikszentmihalyi, 1992; Koufaris,
2002) and the technology acceptance model (TAM) (Davis, 1989, Koufaris, 2002;
ŠUmak, HeričKo, & PušNik, 2011; Venkatesh, Morris, Davis, & Davis, 2003) are utilized
in the development of the proposed model. From these three theoretical perspectives,
empirical testing is conducted and theoretical and practical implications are drawn
from the results.

This paper is organized as follows. Section 2 provides the theoretical background rel-
evant to robot-assisted learning acceptance, outlines the proposed research model, and
states the hypotheses. Section 3 describes the procedures and methodology used in this
study. Finally, Sections 4 and 5 present the results of the analysis of survey data and
discuss these results.

2. Theoretical background and hypotheses

2.1. Robot-assisted learning

Alongside various advances in information technology, innovative e-learning systems
have been developed. For example, mobile learning systems (m-learning) enable learners
to be educated anywhere and anytime through their portable electronic devices. Ubiqui-
tous (u)-learning systems, including embedded tutoring and context awareness function-
ality, are provided within many mobile devices along with various features to make
learning systems more intelligent and personal (Hwang, Tsai, & Yang, 2008). To make
interfaces more natural, advanced user interface technologies such as augmented reality,
wearable computing technology, and multimodal interfaces are being considered in the
development of u-learning systems.
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Robot-assisted learning systems can be seen as a subset of u-learning systems. In robot-
assisted learning, a humanoid robot acts as an intelligent computer. Sensors built into the
robot acquire contextual information in real time, which is then used to provide individua-
lized learning. Various multimodal features, including voice, sound, color, light, screen
displays, and even gestures, are used to facilitate learning. Although these features are
also available with conventional u-learning systems, humanoid robots may be perceived
as more natural than PCs, smart phones, dedicated kiosks, or any other popular devices
commonly used in u-learning systems. Humanoid robots are also more attractive; they
have the advantage of greater conversational flow and familiarity to learners due to
their likeness to humans (Tinwell et al. 2011). Thus, robot-assisted learning systems
may be considered an advanced form of u-learning systems.

In most cases, the role of the robot in robot-assisted learning systems is a teaching
assistant rather than a tutor. Han (2010) suggested that teaching assistant robots may
be useful in innovative educational settings for learners to obtain knowledge and skills
under the supervision and support of a teacher both inside and outside the classroom.
Also, in robot-assisted learning systems, robots can be used as educational tools and act
as a sort of classmate of the children.

The effects of the features of robot-assisted learning systems on learners’ adoption
behavior have not been empirically determined. Some studies have been conducted
on adoption of robots in other fields. However, these studies did not examine the fea-
tures of robot-assisted learning systems. Fridin and Belokopytov (2014) examined
acceptance of socially assistive humanoid robots by preschool and primary school tea-
chers. They found that some cognitive and affective factors affect teachers’ intentions to
use the robot. Alaiad and Zhou (2014) investigated the factors affecting adoption of
healthcare robots. They developed a research model based on the unified theory of
acceptance and use of technology (UTAUT). In addition, Stafford, MacDonald, Jaya-
wardena, Wegner, and Broadbent (2014) focused on psychological factors that affect
users’ intention to use a robot. They suggested that a positive attitude toward the
robot increased adoption intention (AI). However, they did not consider the functional
features of robots.

Studies on adoption of e-learning systems have proposed several cognitive behavioral
models, such as the theory of planned behavior (Ajzen, 1991), TAM (Davis, 1989), and
expectation confirmation theory (Bhattacherjee, 2001). These models have been widely
used to explain adoption and continuance behavior of users of e-learning technologies
(ŠUmak et al., 2011). The TAM has been utilized in information technology acceptance
and usage research for nearly two decades. In this model, two independent factors, per-
ceived performance (or usefulness) and perceived ease of use, are the main determi-
nants of technology adoption.

In the context of a new e-learning technology, various factors may influence users’
decision-making as to how and when they will use a particular technology. According
to the meta-analysis of ŠUmak et al. (2011), the quality of information (Alkhattabi,
Neagu, & Cullen, 2011) and e-learning technology systems influences acceptance via
perceived usefulness and perceived ease of use. In this study, perceived usefulness is
equated with the construct known as performance expectancy (PE), and perceived
ease of use is equated with effort expectancy (EE).
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Figure 1 shows the proposed combined model for use in the context of robot-assisted
learning. Intention to adopt robot-assisted learning was evaluated using revised versions of
the constructs of the UTAUT2 modified from that originally proposed by Venkatesh et al.
(2003), flow theory (Daft & Lengel, 1986; Koufaris, 2002), MR theory (Daft & Lengel,
1986; Liu et al., 2009) and the theory of PSRs (Levy, 1979; Rubin et al., 1985). As the
figure shows, seven constructs derived from studies using these theories were utilized in
the research model put forward in the current study: human likeness factors (multimodal
capability (MC), MR, and the PSR), cognitive learning performance factors (PE and EE),
one affective learning performance factor (concentration), and AI. We propose that these
constructs determine AI. In the context of robot-assisted learning systems, the variables in
the combined model were posited as key drivers of intention to adopt robot-assisted learn-
ing systems.

2.2. Affective factors: concentration while learning

In flow theory, flow is regarded as one way, along with usefulness and ease of use, to deter-
mine the intention of a user to use e-learning technology. Flow is defined as “the state in
which people are so involved in an activity that nothing else seems to matter; the experience
itself is so enjoyable” (Csikszentmihalyi & Csikszentmihalyi, 1992, p. 4). Flow occurs when
an experience is so engrossing and enjoyable that it becomes autotelic, that is, worth doing
for its own sake even though it may have no consequence outside itself (Csikszentmihalyi &
Csikszentmihalyi, 1992, p. 4).

In flow theory, concentration and other constructs related to hedonic rather than uti-
litarian values may also explain acceptance of e-learning. Concentration has been found to
influence the overall experience of computer users positively (Hoffman & Novak, 1996;

Figure 1. Conceptual framework.Note: MC: multimodal capability; MR: media richness; PSR: para-social
relationship; PE: performance expectancy; EE: effort expectancy; CON: concentration; AI: adoption
intention.
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Koufaris, 2002; Novak, Hoffman, & Yung, 1998). In the robot-assisted learning context,
concentration may also contribute to actual and intended use of robot-assisted learning
systems because when users are concentrating hard (i.e. they are in flow), they become
absorbed in their activity and better able to focus on e-learning content, which affects indi-
vidual performance and continuance intention.

A positive association between concentration and adoption of robot-assisted learning
systems may be predicted from the results of research on e-learning systems. Research
has demonstrated a positive relationship between flow and intention to adopt e-learning
systems (Davis, 1989; Van der Heijden, 2004; Koufaris, 2002). Flow is a positive psycho-
logical concept related to intrinsic motivational factors (Yang & Lin, 2011) that may be
applicable to the context of robot-assisted learning systems. Hence, we hypothesize that:

H1: Concentration while learning is positively associated with intention to adopt robot-
assisted learning systems.

2.3. Cognitive factors: PE and EE

When a user is presented with a new learning technology, several factors may influence the
decision as to how and when the technology will be used. Cognition-based behavioral
models have been widely used to explain users’ behavior regarding adoption of e-learning
technologies (Ajzen, 1991; Bhattacherjee, 2001; Davis, 1989; ŠUmak et al., 2011). Among
these cognition-based behavioral models, the TAM (Davis, 1989) has been frequently used
in studies of information technology acceptance and usage for nearly two decades. In this
model, perceived usefulness and perceived ease of use are identified as main determinants
of technology adoption. In the UTAUT2, which is the model used in this study, PE and EE
are representative factors associated with technology adoption or purchase intention; these
constructs are equivalent to perceived usefulness and perceived ease of use, respectively.
The contribution of these two constructs in explaining adoption behavior has been
clearly confirmed by studies based on IT adoption theories.

In previous studies of technology acceptance using the UTAUT2 model, PE and EE are
key factors contributing to the success of e-learning (Ong & Lai, 2006, 2007; Ong, Lai, &
Wang, 2004). Accordingly, we posit that the positive relationship between these factors
and purchase intention will also be applicable in the context of robot-assisted learning.
For adoption of e-learning systems, perceived usefulness (or PE) and perceived ease of
use (or EE) are determinants of acceptance (ŠUmak et al., 2011). Likewise, we postulate
that these factors will be applicable to the context of robot-assisted learning systems.
Thus, the following hypotheses are presented:

H2: PE is positively associated with intention to adopt robot-assisted learning systems.
H3a: EE is positively associated with intention to adopt robot-assisted learning systems.

The relationship between EE and PE has been examined in many studies using various the-
ories of adoption of information technologies. A positive causal relationship between EE and
PE has been identified (Koufaris, 2002; Venkatesh, Thong, & Xu, 2012). This causality is
more frequently found in the context of individual information systems than enterprise
information systems such as enterprise resource planning and supply chain management,
which employees are forced to use. Since use of robot-assisted learning systems is not
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mandatory, they should be classified as individual information systems for the purposes of
group communication and problem-solving. Hence, a positive causality between EE and PE
is likely to be found in the context of robot-assisted learning systems. Thus, we hypothesize
that:

H3b: EE is positively associated with PE while using robot-assisted learning systems.

In addition, past researchers identified a positive relationship between flow and perceived
ease of use (Chang & Wang, 2008; Moon & Kim, 2001). EE (i.e. ease of use), a potentially
important perceived characteristic of information technologies, may influence the flow
experience. Csikszentmihalyi and Csikszentmihalyi (1992) argued that the feasibility of
performing an activity for a given individual facilitates flow. Thus, we assume that flow
will be better for individuals that use robot technologies that are easier to use. In previous
research, EE has been related to the perceived enjoyment of interacting with computer
systems and to the flow experience while interacting with computers (Davis, 1989). Gen-
erally, people experience more pleasure when using a technology that requires less effort.
Ease of use also facilitates concentration (Zhou, 2011). Therefore, EE is important to user
concentration. Thus, we hypothesize that:

H3c: EE is positively associated with concentration while learning via robot-assisted learning
systems.

2.4. Human likeness

2.4.1. Para-social relationships
The term “PSR” is a socio-relational term originally used in mass media research. It is
defined as an emotional affinity between people and media characters resembling that
experienced during a face-to-face relationship (Horton & Richard Wohl, 1956). Previous
studies have focused on PSRs such as that between viewers and newscasters or actors and
characters in television dramas, soap operas, or animated programs. Recently, studies have
examined PSRs between users and their computer devices such as smart phones and
embedded software such as mobile applications (Lee & Kwon, 2013). PSRs do not
develop uniformly. Horton and Wohl (Horton & Richard Wohl, 1956) suggested that
PSRs may be established because people tend to relate to and feel a familiarity with char-
acters in mass media. Levy (1979) analyzed PSRs between newscasters and television
viewers, showing that emotional bonds are key to the building of these relationships. In
addition, perceived realism and affinity are main requirements for the development of
PSRs (Rubin et al., 1985).

In previous studies in the field of educational psychology, the teacher–student relation-
ship was found to affect student performance in terms of academic achievement and estab-
lishment of learning motivation (Davis, 2003; Howes, Hamilton, & Matheson, 1994;
Pianta, Steinberg, & Rollins, 1995). Generally, affective relationships between students
and teachers increase learning performance (Davis, 2003; Howes et al., 1994; Pianta
et al., 1995). In self-system theories of motivation, warm and open relationships have
been shown to foster student motivation for learning and to encourage positive task beha-
viors (Ames, 1992; Roorda, Koomen, Spilt, & Oort, 2011).

In the robot-assisted learning context, therefore, learner perception of the robot–
learner relationship may also be relevant to adoption of robot-assisted learning. A positive
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PSR between the robot and the learner may result in better learning performance than for
learners without a positive PSR. Hence, we hypothesize that:

H4a: The PSR between the user and the robot is positively associated with PE while using
robot-assisted learning systems.

In addition, a PSR with the robot may affect the learner’s concentration. A PSR is more
than just an acquaintance (Koenig & Lessan, 1985). Such a relationship entails emotional
attachment to the object of interest, in this case, the information system. In previous
studies of PSRs, emotional attachment was identified as an important antecedent or
dependent factor. Soukup (2006) mentioned that PSRs involve emotional attachment
between fans and celebrities. In a study of users of educational games, Hsu, Wen, and
Wu (2009) found that the commitment of players to the game was based on their
avatars. The results of these studies imply that PSRs with information systems require a
certain degree of concentration. Thus, we believe that in robot-assisted learning
systems, which are a subset of information systems, the situation will be the same. As
Lee and Kwon (2013) stated in their study on mobile device adoption, factors such as
PSRs must be considered in assessing the potential of information technologies in
terms of user satisfaction, post-adoption usage, and overall success.

The association of AI with PSRs and concentration is also supported by adoption the-
ories related to information systems. Unlike enterprise-level information systems, which
focus on undertaking business tasks effectively and efficiently (Delone & McLean, 2003),
robot-assisted learning systems are individual systems that enable group-level communi-
cation between learner(s) and virtual teacher(s). According to the UTAUT2 theory,
hedonic value is also important to system adoption. In addition, group-level communi-
cation is encouraged by socio-relational factors, which are critical to AI, as are flow-oriented
factors such as concentration.

The role of the PSR as a socio-relational factor is also important in education theory, in
which the student–teacher relationship is characterized and measured by the degree of clo-
seness, conflict, and dependency. Here, closeness refers to the warmth and open com-
munication that are characteristic of a given relationship. Conflict is observed in
negative and coercive student–teacher interactions. Dependency refers to overly clingy
student behavior. These three measures are closely related to student concentration. Lear-
ners tend to focus better when they have warm feelings for the teacher, and as a result,
achievement is higher. It is reasonable to expect that the situation will be similar in the
context of robot-assisted learning systems. Thus, we hypothesize that:

H4b: The PSR is positively associated with concentration while using robot-assisted learning
systems.

2.4.2. Multimodal capability
A multimodal interface helps users to perceive a robot more as a substitute for a human
teacher and less as a man-made device. The goals of MC are to maximize the robot’s
human likeness and cognitive and physical abilities, reduce the memory load for users
in completing certain tasks, and minimize the cost of learning (Figure 2). Robot-assisted
learning systems must be able to adapt to the abilities of different users, using the same
terminology across modalities in order to ensure consistency of system interactions
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(Reeves et al., 2004). A multimodal interface may minimize the effort required to operate
learning systems, thus enhancing learning performance. Although multimodal interfaces
have been shown to increase the user’s perception of ease of use (Comai and Mazza, 2011;
Dias et al., 2012; Stein, 1997), no empirical testing has been conducted in the context of
robot-assisted learning. In order to rectify this situation, we hypothesize that:

H5a: MC is positively associated with EE while using robot-assisted learning systems.

A multimodal interface can also improve the PSR between the learner and the teaching
robot. This notion can be understood in the context of the principle of the uncanny
valley (Jentsch, 1906). Tinwell et al. (2011) described the uncanny valley as “a mental
state where one cannot distinguish between what is real or unreal and which objects are
alive or dead”. Exploring this principle, studies have affirmed the positive relationship
between perceived human likeness and perceived familiarity. Thus, feelings of intimacy
toward a robot or other virtual characters are more positive, the more they resemble
humans (Tinwell et al. 2011). According to PSR theory, human likeness enhances the
PSR between users and virtual characters. In this study on robot-assisted learning invol-
ving humanoid robots, we assume that the more human-like the response provided by the
robot, the stronger the PSR. Thus, we hypothesize that:

H5b: MC is positively associated with the PSR while using robot-assisted learning systems.

2.4.3. Media richness
MR was defined by Sheer and Chen (2004, p. 77) as follows:

the degree of richness measured by the quantity and quality of four attributes: a) the
availability of instant feedback, b) the use of multiple cues such as voice inflection,
body gestures and graphic symbols, c) the use of natural languages, and d) the personal
focus of the medium.

According to flow theory, MR is the capacity to process rich information (Daft & Lengel,
1986). It has also been associated with user concentration and usage intention (Liu et al.,
2009). Moreover, in e-learning system research, it is considered as an important factor

Figure 2. Multimodal capabilities of the robot-assisted learning system examined in this study: touch,
voice, and gesture.
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affecting learning performance (Barra, Aguirre Herrera, Pastor Caño, & Quemada Vives,
2014; Ferretti, Mirri, Muratori, Roccetti, & Salomoni, 2008).

However, research based on conventional MR theory has only considered the type of
content (e.g. text, audio, video, or a combination of these). For newer e-learning technol-
ogies such as robot-assisted learning (especially learning systems in which humanoid
robots are used), MR must include representational richness due to the human represen-
tations characteristic of humanoid robots (e.g. speech synthesis, motions, and gestures; see
Figure 3). Greater MRmay facilitate learner understanding of the message conveyed by the
robot-assisted learning system. Thus, we hypothesize that:

H5c: MR is positively associated with EE while using robot-assisted learning systems.

Additionally, according to MR theory, face-to-face interaction is richest because it has the
capacity for immediate feedback and involves use of multiple cues and natural language,
while plain text is the least rich mode of interaction (Daft & Lengel, 1986; Sheer & Chen,
2004). Face-to-face interaction is one of the essential characteristics of humanoid robots
(Han & Kim, 2009; Hwang et al., 2008; Jahng, Jain, & Ramamurthy, 2006). Humanoid
robots in robot-assisted learning systems offer stronger face-to-face interaction using
non-verbal and verbal cues such as voice inflection, body gestures, directness, and
instant feedback than other types of robots and traditional e-learning systems. Hence,
we postulate that the more human-like the robot is, the higher the perception of MR
will be. MR increases the learner’s perception that devices such as robot-assisted learning
systems are human-like, which facilitates formation of PSRs, according to PSR theory (Lee
& Kwon, 2013; Levy, 1979). Thus, we hypothesize that:

H5d: MR is positively associated with development of PSRs between users and robot-assisted
learning systems.

3. Methodology

3.1. Participants and data collection

Before the main survey was conducted, a pilot test including data from 50 respondents was
performed to validate the measurement instrument and to reduce potential ambiguity in

Figure 3.Media richness in the robot-assisted learning system examined in this study: a combination of
screen display, speech, sound effects, color, light, and gestures.
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the wording of items, questionnaire format, and instrument length. The purpose of this
pilot test was to remove potential concerns about common method bias due to the use
of a field survey technique. We found preliminary evidence that the scales were reliable
and valid. These 50 participants were not included in the main survey.

The main survey was conducted over a period of two weeks. The questionnaire began
with an opening statement about the purpose of this study and a paragraph that explained
the meaning of robot-assisted learning. After reading these introductions, the parents of
elementary school-aged child participants provided demographic information. The
parents carefully observed a robot-assisted learning case that demonstrated how the func-
tionalities of the robot-assisted learning system are used (see Figure 4). Finally, the parents
responded to questions about their opinions of the system.

In this experiment, we used the DARwIn-op robot. The robot occupies the role of an
adviser who helps in learning of the multiplication table. The learning software was
designed for a human–robot interaction service. In the experiment, the robot asked the
child multiplication questions and then calculated the number of correct answers. If the
score was not satisfactory or the child hesitated to answer the questions, the robot adjusted
the level of difficulty autonomously.

In this study, we surveyed the parents of the participating elementary school-aged chil-
dren because parents have the purchasing power in most households. In our study, parti-
cipating parents had great interest in robot-assisted learning systems for their children.
For manufacturers of robots in e-learning systems, parents are their main customers.
Therefore, it is important to determine which factors affect these customers’ intention
to purchase. Additionally, children’s responses were not included in our survey due to
the possibility of low reliability.

We collected 490 valid responses. The descriptive statistics relating to subjects’ profiles
are summarized in Table 1. The items utilized in the survey are listed in Table 2.

Figure 4. Experiment with robot-assisted learning
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3.2. Measures

An initial model was developed that illustrates the relationships among the factors listed in
Figure 1. A questionnaire was designed consisting of 29 items scored on a 7-point Likert
scale and arranged into groups of 4 or 5 items addressing these factors.

Table 1. Profiles of respondents (N = 490).
Category Demographic information Number Percentage

Age group 30s 149 30.4
40s 340 69.4
≥50 1 0.2

Gender Male 242 49.4
Female 248 50.6

Number of children (K–5th grade) 1 98 20.0
2 330 67.3
≥3 62 12.7

Education Senior high school 88 18.0
Bachelor’s 347 70.8
Master’s 44 9.0

Ph.D. or higher 11 2.2
Occupation Agriculture, forestry, or fisheries 1 0.2

Teacher or academic lecturer 9 1.8
Specialized job 26 5.3
Business career 17 3.5

Office job 197 40.2
Production, skill, or labor jobs 32 6.5

Service and sales 15 3.1
Self-employed 37 7.6
Freelancer 19 3.9

Full-time housewife 132 26.9
Other 5 1.0

Table 2. Survey items and sources.

Theory Construct
No. of
items Operational definition Reference

UTAUT2 PE 4 Degree to which robot-assisted learning is
considered to improve learning achievement
(based on the concept of performance
expectancy)

Amended from
Venkatesh et al.
(2012)

EE 4 Degree to which robot-assisted learning is
considered by potential users as relatively easy
to use and understand (based on performance
expectancy)

Amended from
Venkatesh et al.
(2012)

AI 4 Degree to which users intend to adopt the robot-
assisted learning system or increase their use of
it in the future

Amended from
Venkatesh et al.
(2012)

Para-social
interaction theory

PSR 5 Degree of affective familiarity with the humanoid
robot in the robot-assisted learning system

Amended from Lee
and Kwon (2013)

Flow theory CON 4 Degree to which users maintain exclusive, focused
attention on robot-assisted learning activity

Amended from Liu
et al. (2009), Koufaris
(2002)

Media richness
theory

MR 4 Degree of richness with which the robot is
considered to express instruction when
communicating with users

Amended from Jahng
et al. (2006)

Human–computer
interaction theory

MC 4 Degree to which users are aware of the natural
interface method between themselves and the
robot

Created for this study

Note: MC: multimodal capability; MR: media richness; PSR: para-social relationship; PE: performance expectancy; EE: effort
expectancy; CON: concentration; AI: adoption intention.
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Using the definitions of the constructs outlined in Table 2, we derived the survey
items used to measure the variables in the research model from prior research. The
scales for the constructs utilized in this study (i.e. PE, EE, AI, coefficient of concentration
(CON), PSR, and MR) were adopted from the UTAUT2 (Venkatesh et al., 2003), flow
theory (Liu et al., 2009), PSR theory (Lee & Kwon, 2013), and MR theory (Jahng et al.,
2006).

The concepts of MR and MC were extracted from the unique characteristics of
robot-assisted learning via ubiquitous sensor networks in educational fields. A 7-point
Likert scale ranging from “strongly disagree” (1) to “strongly agree” (7) was used
to measure responses. PSR was measured using five items adopted from the scale
proposed by Rubin and Perse (1987) and Sundar (2004). CON was measured using
four items adopted from the scale proposed by Liu et al. (2009). PE, EE, and AI were
measured using four items each adopted from the scale proposed by Venkatesh et al.
(2012).

3.3. Assessing reliability and validity

To ensure the discriminant and convergent validity of the sample data set, the constructs
were tested using exploratory factor analysis. Conventionally, a Cronbach’s α coefficient
between 0.870 and 0.965 indicates adequate reliability. In the reliability analysis for this
study, the Cronbach’s α coefficient of CON was 0.965. All dimensions exceeded 0.800,
meaning that the questionnaire dimensions were highly homogenous, reliable, and reflec-
tive of the study’s structural dimensions. The reliability coefficients are displayed in Table
3. To assess common method bias, Harman’s single-factor test was conducted (Ong & Lai,
2006). All variables were included in an exploratory factor analysis and the first factor
accounted for less than 50% of the variance, indicating that common method bias is
not of great concern in this study.

Convergent validity was assessed according to the reliability of the items, average var-
iance extracted (AVE) values, and factor analysis results. Item factor loadings and squared
multiple correlations from the confirmatory factor analysis are shown in Table 3. Regard-
ing internal consistency (reliability), composite reliability scores for every construct
(ranging from 0.914 to 0.975, as shown in Table 3) were well above 0.70. AVE measures
the amount of variance that a construct captures from its indicators relative to the amount
due to measurement error. The overall AVE score was calculated from the square roots of
the AVE scores listed in Table 3. AVE scores for every construct, ranging from 0.794 to
0.906, satisfied the necessary requirements. Barclay, Higgins, and Thompson (1995)
suggested that item loadings for all constructs should exceed 0.70. In this study, the load-
ings of each item met this criterion (Table 3).

Discriminant validity was assessed by examining the relationship between correlations
among constructs and the square roots of AVE values (Fornell & Larcker, 1981). The
square roots of the AVE values should be greater than the correlations among the con-
structs, indicating that more variance is shared between the construct and its indicators
than with other constructs. Table 3 shows that the square roots of all the AVE values (i.
e. the numbers on the diagonal) were greater than the correlations among constructs (i.
e. the off-diagonal numbers), indicating that the discriminant validity of all constructs
was satisfactory.
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Table 3. Reliability and discriminant and convergent validity.
Constructs Items Factor loadings T-value CR CA CON EE AI MC PE PSR MR

CON CON1 0.937 45.750 0.975 0.965 0.952
CON2 0.961 99.689
CON3 0.958 89.220
CON4 0.950 67.661

EE EE1 0.922 43.814 0.964 0.950 0.385 0.933
EE2 0.939 52.307
EE3 0.930 47.141
EE4 0.941 61.563

AI AI1 0.897 32.485 0.969 0.957 0.680 0.348 0.942
AI2 0.961 100.494
AI3 0.961 96.889
AI4 0.947 78.132

MC MC1 0.913 44.472 0.948 0.927 0.647 0.518 0.619 0.906
MC2 0.924 62.526
MC3 0.907 41.794
MC4 0.878 25.331

PE PE1 0.931 57.454 0.970 0.959 0.610 0.391 0.750 0.552 0.943
PE2 0.956 89.201
PE3 0.947 67.223
PE4 0.939 60.795

PSR PSR1 0.896 22.947 0.948 0.927 0.762 0.357 0.701 0.678 0.641 0.906
PSR2 0.918 37.894
PSR3 0.917 42.609
PSR5 0.893 36.096

MR MR1 0.885 32.596 0.914 0.870 0.663 0.524 0.664 0.723 0.609 0.668 0.853
MR2 0.866 23.375
MR3 0.920 37.490

Notes: The recommended levels for these statistics are as follows: AVE > 0.50, composite reliability (CR) > 0.70, Cronbach’s α (CA) > 0.70. Other abbreviations are in Table 2.
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4. Results of path analysis

The proposed model was tested using structural equation modeling (SEM) and partial
least squares (PLS) analysis (Ringle, Wende, & Will, 2005) according to the methods
described by Teo, Wei, and Benbasat (2003). SEM is a statistical analysis technique
designed to test conceptual or theoretical constructs. SEM consists of a set of linear
equations that simultaneously test two or more relationships among directly observable
and/or unnamed latent variables. This technique has become extremely popular for
data analysis in education, psychology, business, and other disciplines (Finney & DiSte-
fano, 2006). By contrast, PLS is a form of SEM. In many recent studies in behavioral
research, PLS is widely used because this method requires no model to explain the covari-
ance of all indicators, and because model latent variables can be tested under non-normal
conditions (Püschel, Afonso Mazzon, Mauro, & Hernandez, 2010). In this paper, the data
were analyzed using the PLS software (Smart-PLS version 2.0).

Table 4 and Figure 5 present the properties of the causal paths, including standardized
path coefficients, t-statistics, and explained variance for each equation in the hypothesized
model. In the PLS analysis, examining the R2 scores of endogenous variables allows assess-
ment of the utility of the variables, and examining the structural paths facilitates assess-
ment of the explanatory power of the structural model.

First, affective factors (including concentration) were investigated in terms of flow
theory. The results indicated that concentration was positively and significantly associated
with robot-assisted learning AI (β = 0.354, p < .01). The concentration on robot-assisted
learning was also positively influenced by EE (β = 0.133, p < .10). Thus, H1 and H3c
were supported.

Second, cognitive factors from the TAM (including PE and EE) were investigated. The
results indicated that PE was positively and significantly associated with robot-assisted
learning AI (β = 0.531, p < .01). However, the relationship between EE and robot-assisted
learning AI was not significant. PE related to robot-assisted learning was positively influ-
enced by EE (β = 0.188, p < .10) Thus, H2 and H3b were supported, but H3a was not
supported.

Third, relationships between the dimensions derived from para-social interaction
theory (including PSR) and the TAM and flow theory dimensions were analyzed. The

Table 4. Results of model effects.
Hypothesized paths Path coefficients T-value Results of analysis

H1 CON while learning is positively associated with AI. 0.534*** 3.139 Supported
H2 PE is positively associated with AI. 0.531*** 4.839 Supported
H3a EE is positively associated with AI. −0.008 0.112 N.S.
H3b EE is positively associated with PE. 0.188* 1.761 Supported
H3c EE is positively associated with CON while learning. 0.133* 1.838 Supported
H4a PSR is positively associated with PE. 0.580*** 7.210 Supported
H4b PSR is positively associated with CON. 0.714*** 11.047 Supported
H5a MC is positively associated with EE. 0.237* 1.927 Supported
H5b MC is positively associated with PSR. 0.472*** 3.938 Supported
H5c MR is positively associated with EE. 0.402*** 3.104 Supported
H5d MR is positively associated with PSR. 0.298** 2.462 Supported

***Significant at the .01 level.
**Significant at the .05 level.
*Significant at the .10 level.
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results showed that PE (β = 0.580, p < .01) and concentration (β = 0.714, p < .01) were
positively influenced by the PSR. Thus, H4a and H4b were supported. In terms of the
direct effects of factors, we found a greater impact of the PSR on the affective factor (i.
e. CON) than on cognitive factors (i.e. PE and EE).

Fourth, we examined the relationships between interactivity dimensions (including
MC), TAM dimensions (including EE), and para-social interaction theory dimensions
(i.e. PSR). The results showed that both EE (β = 0.237, p < .10) toward learning using a
robotic system and the PSR (β = 0.472, p < .01) were positively influenced by MC. Thus,
H5a and H5b were supported.

Lastly, the relationships between the para-social interaction theory dimension (i.e.
PSR), the TAM dimensions (i.e. PE and EE), and the flow theory dimension (i.e. concen-
tration) were investigated. The results showed that both EE (β = 0.402, p < .01) toward
learning using a robotic system and PSR (β = 0.298, p < .05) were positively affected by
MR. Thus, H5c and H5d were supported.

5. Discussion and conclusion

5.1. Theoretical implications

In this study, a theoretical model of adoption of robot-assisted learning systems was devel-
oped and tested empirically. Robot-assisted learning has advanced recently due to develop-
ments in e-learning and robot technologies. However, though research has demonstrated the
educational effectiveness of innovative e-learning methods (Hwang et al., 2008; Lee & Kwon,
2013), no empirical studies have been conducted on the adoption of innovative e-learning
systems, especially robot-assisted learning systems. Research in this area is necessary in the
fields of education and information technology. In this study, a robot-assisted learning pro-
totype was utilized and survey data were collected from general users. The resulting data
were empirically tested, and the test results were provided and analyzed.

Figure 5. Model testing results.Notes: MC: multimodal capability; MR: media richness; PSR: para-social
relationship; PE: performance expectancy; EE: effort expectancy; CON: concentration; AI: adoption inten-
tion. *** p < .01. ** p < .05. * p < .10.
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Second, in the proposed model, constructs derived from studies with a socio-relational
perspective, namely the PSR, successfully illustrated the concept of human likeness and
were integrated with those derived from studies based on conventional adoption theories.
The socio-relational perspective was linked to para-social interaction theory to improve
our understanding of the learner’s psychological process in deciding to adopt robot-
assisted learning systems. The significant effect of this process was verified through
empirical analysis. With its MC and enhanced MR (i.e. voice synthesis and gestures),
the resemblance to humans of humanoid-type robots was found to be significant to lear-
ners’ perceptions of robot-assisted learning systems as educationally effective. This factor
also had significant influence on user concentration. These results suggest that in develop-
ing new technologies involving robot technology, such as robot-assisted learning, the
interaction of humans and humanoid robots must be considered.

Both cognitive and affective factors were found to affect intention to adopt robot-
assisted learning systems. PE and EE were tested as two major cognitive factors
common to technology adaptation theories. In addition, the effect of one affective
factor – concentration – on intention to adopt robot-assisted learning was examined
based on flow theory. PE had the strongest direct impact on intention to adopt robot-
assisted learning. Second was concentration. However, no direct impact of EE was
found. Thus, two factors, PE and concentration, explained 63.3% of the variance in inten-
tion to adopt robot-assisted learning in this study.

Finally, EE had an indirect influence on intention to adopt robot-assisted learning
systems through PE and concentration. The direct effects of PE and concentration on
intention to adopt robot-assisted learning were significant, although those of EE were
not. However, the importance of EE was demonstrated by the fact that both cognitive
and affective factors were identified as determinants of intention to adopt robot-assisted
learning. In addition, the effect of EE on PE was consistent with the findings of previous
technology adoption studies (Koufaris, 2002; Venkatesh et al., 2012).

5.2. Practical implications

In this empirical study, MC and MR in robots were found to have an important role in
forming relationships between robots and learners. As explained earlier, MC and MR
are important in creating a natural human–robot interface based on the robot’s likeness
to humans; these constructs are needed to facilitate usage of robot-assisted learning tech-
nologies. Research has found that robots that resemble human beings are more successful
in providing educational content to students. The importance of human likeness was
emphasized in this study, as shown by the significant effect of the PSR on PE and concen-
tration. In practical terms, the adaptability of potential users may be increased by improv-
ing the level of human likeness in robots to facilitate mutual interaction between users and
robots in the context of robot-assisted learning. Hinds et al. (2004) also claimed that
humanoid robots provide a more natural interface than more mechanistic robots. Thus,
directives for development of robot-assisted learning should include development of
robots to resemble humans as much as possible in order to increase the practical adapta-
bility of this form of learning.

In this study, the important role of educational robotic learning systems was verified;
robot-assisted learning was effective in increasing the level of learning, PE and EE, and
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degree of concentration of users. Robots used for robot-assisted learning may occupy
three roles: they may help users meet learning objectives, assist users in learning, and
act as learning tools. In these roles, the interaction between robots and learners is most
important when robots are used as learning assistants and learning tools. The role of
the teacher is extremely important, but any teacher has limited ability to interact
with all students in a classroom. Thus, educational robots may be useful as teaching
assistants.

Lastly, concentration was identified as a significant affective factor in terms of intention
to adopt robot-assisted learning. This result suggests that robot-assisted learning can be
made more salable by adding “fun factors” to enhance performance and other features
to attract and retain attention of users. As discussed above, robot-assisted learning is a
new way to learn among many possible ways of learning, and it has not yet matured tech-
nologically. Market formation is still in the initial stage. This new study on adoptability of
robot-assisted learning has value in its evaluation of the effects of various factors on inten-
tion to adopt robot-assisted learning, providing strategic implications for developers about
which characteristics to focus on and what requires supplementation from a practical
perspective.

5.3. Limitations

This study of robot-assisted learning involves a specific type of humanoid robot. However,
development of humanoid robots has not yet reached the level at which it may be equated
with an actual human being as an information medium offering learning content due to
technological limitations in judgment and expression. In addition, the robot-assisted
learning system included in this study was only a prototype of a full learning model.
Accordingly, the results of this study should not be generalized to all robots used in edu-
cational settings and all academic fields. Nonetheless, this study has value as the first
empirical study identifying factors related to adoption of robot-assisted learning. More
in-depth studies can be carried out in the future including robots resembling humans
to a greater extent and in different settings and fields.

Other facilitating conditions such as list price or usage location may also be important
factors affecting robot adoption. However, these facilitating conditions in general affect
the actual purchase, not intention to adopt. Moreover, price level and usage location
are already well-known factors affecting adoption behavior. Because we did not include
these factors in our research model, future research may want to examine them in the
context of the robot-assisted learning.

Moreover, the methodology used in this study has some limitations because the con-
structs in our model (PE, EE, PSR, and CON) were measured indirectly by parents. In
the future, we plan to perform a confirmatory study by directly collecting the responses
of the children to determine if their intention to adopt this technology is consistent
with that of their parents.
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