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Classifiers and imputation methods have played crucial parts in the field of big data analytics. Especially,

when using data sets characterized by horizontal scattering, vertical scattering, level of spread, compound

metric, imbalance ratio and missing ratio, how to combine those classifiers and imputation methods will lead

to significantly different performance. Therefore, it is essential that the characteristics of data sets must be

identified in advance to facilitate selection of the optimal combination of imputation methods and classifiers.

However, this is a very costly process. The purpose of this paper is to propose a novel method of automatic,

adaptive selection of the optimal combination of classifier and imputation method on the basis of features of

a given data set. The proposed method turned out to successfully demonstrate the superiority in performance

evaluations with multiple data sets. The decision makers in big data analytics could greatly benefit from the

proposed method when it comes to dealing with data set in which the distribution of missing data varies in

real time.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

Emerging infrastructures like cloud systems, smart grids, perva-

ive computing systems and network-related processing are provid-

ng managers and practitioners with more flexible utilities for the

ake of adopting user-intended applications (Nia, Atani, & Haghi,

014). Such infrastructures have greatly contributed to producing

ig data set in a format of massive amounts of streamed informa-

ion from a wide variety of the network-connected objects (Sowe,

imata, Dong, & Zettsu, 2014). Correspondingly, data sets in mar-

eting, scheduling, and manufacturing businesses become very large

volume), get rapidly updated by streaming (velocity) (Bifet, 2013),

nd/or inadvertently tend to be incomplete due to the nature of their

ources like IoT (Internet of Things) and social networking services

SNSs) (variety) as well (Chen, Mao, Zhang, & Leung, 2014). It is no

urprise that the significant challenges in this type of dataset encom-

ass the unstable data structure and/or characteristics with null value

roblems caused by either rapidly changing user locations, fault sen-

ors or user’s non-responses. The problems like this become more

erious when the big data application systems implemented on pow-

rful classifiers tend to repeatedly show poor performances because
∗ Corresponding author. Tel.: +8229612148; fax: +8229610515.
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f the constantly changing patterns of missing data, data volume and

ata structure embedded in the big data sets.

To cope with these challenges, intelligent applications must be

mproved in the following ways. First, due to the volume and veloc-

ty of data in these data sets, scalable classification is required (Jang,

014; Liu, Blasch, Chen, Shen, & Chen, 2013). Second, with respect

o variety, many null values must be included in order to maintain

satisfactory level of reasoning accuracy (Kim, 2012; Wu, Zhu, Wu,

Ding, 2014). To alleviate these problems, it is necessary to develop

sophisticated method of finding optimal pairs from every possible

lassifier/imputation method pair in real time.

According to the literature in this area, characteristics of missing

ata, data sets, and imputation methods may influence the perfor-

ance of classification algorithms (Sim, Lee, & Kwon, 2015). Research

n various data domains has been conducted related to selecting an

mputation method that improves the performance of a classifier, and

everal new imputation methods have been proposed (Farhangfar,

urgan, & Dy, 2008; Hengpraphrom, Wichian, & Meesad, 2010; Kang,

013; Liu & Brown, 2013; Luengo, García, & Herrera, 2010; Silva &

ruschka, 2013). Although most imputation methods improve over-

ll classification performance, the magnitude of improvement dif-

ers according to the problem domain (Farhangfar et al., 2008; Heng-

raphrom et al., 2010; Su, Khoshgoftaar, & Greiner, 2008). The dif-

erences in magnitude become clearer as the ratio of missing data

ncreases (Hengpraphrom et al., 2010; Su et al., 2008). To the best of

ur knowledge, when experimenting with various data sets, no im-

utation method has always proven superior to other methods in
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2015.11.004&domain=pdf
mailto:deskmoon@gmail.com
mailto:obkwon@khu.ac.kr
mailto:obyung@gmail.com
mailto:kunchanglee@gmail.com
http://dx.doi.org/10.1016/j.eswa.2015.11.004


486 J. Sim et al. / Expert Systems With Applications 46 (2016) 485–493

a

e

i

m

d

u

i

t

f

c

f

e

p

t

p

c

M

p

d

R

a

m

n

X

d

t

i

o

d

2

t

t

e

i

c

c

&

w

c

t

n

L

i

c

t

t

i

t

i

M

i

t

l

f

m

s

b

d

t

combination with any specific classifiers, because the effect of an

imputation method on a classifier differs according to the data set

(Farhangfar et al., 2008; Kang, 2013).

If the characteristics of the data set are invariant and fully known

beforehand, as prior studies have assumed, identification of an op-

timal combination of a classifier and imputation method would be

possible. However, if the data is collected in real time, the charac-

teristics of the data set will differ depending on the timeline. In this

case, the performance of all possible pairs of classifiers and imputa-

tion methods for all types of data characteristics must be evaluated in

order to select the optimal combination. Moreover, if real-time anal-

ysis is needed for an application, an autonomous method of select-

ing this optimal combination is necessary. However, very few studies

have addressed this need for autonomous selection of classifiers and

imputation methods based on the characteristics of a data set, espe-

cially as regards the structure of null values.

The purpose of this paper is to propose an adaptive method of se-

lecting the optimal classification algorithm/imputation method pair.

An autonomous, adaptive selection method should be able to recog-

nize the features of a data set and, if necessary, make changes auto-

matically. To develop this method, we amended case-based reasoning

as follows: the original case base is preprocessed to derive a com-

pound metric of a null data structure. Then a candidate set is formed

by identifying multiple pairs, and a pair is selected from among the

candidate pairs. To demonstrate the feasibility and superiority of the

proposed method, we conducted experiments with multiple bench-

mark data sets and several classifiers and imputation methods that

have been deemed suitable in previous studies for reasoning with in-

complete data sets.

The paper is organized as follows: Section 2 describes the related

works on imputation methods and classifiers. The proposed method

and corresponding experiment, which shows the performance of the

method, are delineated in Sections 3 and 4, respectively. Finally, in

Section 5, we conclude with the implications of the study results to

researchers and practitioners.

2. Related works

2.1. Selection of imputation methods

Researchers using supervised learning algorithms, such as those

used for classification, have generally assumed that training data sets

are complete and that all occurrences contain a value. Missing values

are filled in using many imputation methods. Imputation techniques

are based on the idea that missing data for a variable are replaced

by an estimated value that is drawn from the distribution of existing

values. In most cases, attributes of data sets are interdependent; thus,

through identification of relationships among attributes, missing

values can be determined (Batista & Monard, 2003; Kang, 2013; Li,

Li, & Li, 2014).

There is no single superior imputation algorithm for replacing all

missing data in a set, because all imputation methods are affected

by the characteristics of the data set and the missing values (Kwon

& Sim, 2013; Loh & H’ng, 2014). Thus, if the characteristics of a data

set and its missing values are changed by some event, then the per-

formance of the selected imputation method may be altered. For ex-

ample, for sensor-based traffic data, which vary periodically under

certain expected conditions such as changed load capacity or altered

timeline, robust imputation algorithms using historical information

may be prepared (Tan, Wu, Cheng, Wang, & Ran, 2014). However, var-

ious data sets, such as those from SNSs, may be changed by uncertain

and complex events (Wrzus, 2013); therefore, the characteristics of

missing values may also change. Due to this uncertainty, it is impos-

sible to prepare a robust imputation method using data from prior

experiments. Moreover, most sensor-based data require real-time de-

cisions. The need for swift execution makes it difficult to select a suit-
ble imputation method fast enough using the techniques outlined in

xisting studies in which comparative experiments among candidate

mputation methods were performed. Considering the two factors of

issing data variability and execution time, we assert that only meta-

ata that influence the performance imputation method should be

sed to select a suitable imputation method. In addition, the follow-

ng factors with respect to meta-data must be considered.

Missing ratios: When the ratio of missing to present data increases,

he error of the imputation also increases and the difference in per-

ormance of the imputation method compared to other methods be-

omes larger. Each imputation method has a different pattern of per-

ormance for a given missing ratio (Hengpraphrom et al., 2010; Su

t al., 2008).

Missing value distribution: For any given missing ratio, each im-

utation method has a different performance pattern according to

he distribution of missing cells. For example, even if the same im-

utation method is used repeatedly, its performance may change ac-

ording to the probability of missing cells in each feature (Wasito &

irkin, 2006). Various patterns of missing data, such as missing com-

letely at random (MCAR) and missing at random (MAR), can cause

ifferences in the performance of the imputation method (Ghannad-

ezaie, Soltanian-Zadeh, Ying, & Dong, 2010). Here, MCAR refers to

missing data process that does not depend on either observed or

issing values, whilst MAR is defined as a situation in which missing-

ess depends on observed values, not on unobserved values (Wang,

ie, & Fisher, 2011).

Data set characteristics: The characteristics of a data set, such as the

egree of imbalance, the size of the sample, and the number of fea-

ures, influence imputation performance (Sim et al., 2015) because an

mputation method is a form of machine learning. The performance

f a machine learning algorithm depends on the characteristics of the

ata set (Kwon & Sim, 2013).

.2. Selection of classifiers

The classification algorithm is one of the most important func-

ions in the analysis of large data sets. Classification algorithms are

he most widely used data mining models to extract valuable knowl-

dge from huge amounts of data (Dogan & Zuhal, 2013). Classification

s a data mining process that assigns items in a collection to target

ategories or classes. The goal of classification is to predict a target

lass for each case in the data set accurately (Akhila, Madhu, Madhu,

Pooja, 2014). Many comparative analyses are used to determine

hich algorithm is best suited for a particular data set. Classification

apability depends on the types of algorithms and the characteris-

ics of the data, such as the degree of imbalance, number of features,

umber of instances, and number of class types (Kwon & Sim, 2013;

iu & Zhou, 2006; Okamoto, 1963; Raudys & Pikelis, 1980). There

s no superior classification algorithm for all types of data sets, be-

ause each classification algorithm is affected by the characteristics of

he data set (Kwon & Sim, 2013). Moreover, when missing values are

reated by a certain imputation method, the classification algorithm

s also affected by the imputation method. Thus, each different impu-

ation method/classifier pair results in a different performance, even

f they treat the same data with the same missing values (Bastista &

onard, 2003; Farhangfar et al., 2008; Silva and Hruschka, 2013).

The descriptions of this causal relationship in the literature are

nsufficient. Intuitively, it seems that the cause may be related to

he choice of the method of estimation and model of the machine

earning algorithm, as both imputation methods and classifiers are

orms of machine learning. The machine learning algorithm builds a

odel via its own method. For example, J48 divides classes with a

plit point (Safavian, 1991), whereas SVM divides classes with outer

oundary points, such as marginal vectors (Suykens, 1999), and k-NN

ivides classes with similar instances (Zhang, 2007). This means that

he chosen imputation method must estimate the determinant point
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Fig. 1. Overall framework for adaptive matching method.
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Table 1

Benchmarked data set.

Dataset # of cases Features Decision attributes

Iris 150 Numeric (4) Categorical (3)

Wine 178 Numeric (13) Categorical (3)

Glass identification 214 Numeric (9) Categorical (7)

Liver disorder 345 Numeric (6) Categorical (2)

Ionosphere 351 Numeric (34) Categorical (2)

Statlog Shuttle 57999 Numeric (7) Categorical (7)

Table 2

Input features.

Group Features

Input feature Data characteristics D_Imbalance

Missing data characteristics R_missing

SE_HS

SE_VS

Spread

Class Performance Relative Accuracy
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orrectly according to the kind of classifier. Therefore, the imputation

ethod may distort the determinant point depending on the charac-

eristics of the machine-based learning algorithm.

As a result, to select an optimal pair including a classifier and

n imputation method, the characteristics of the missing values and

hose of the data set must be considered. However, previously pub-

ished methods must consider all possible pairs of classifiers and

mputations. This process requires many resources and considerable

xecution time, and is very costly. To avoid excess consumption of

ime and resources while still selecting an agile classifier-imputation

ethod combination, we use meta-data to determine the character-

stics of the missing data in a given data set. Selection of pairs of al-

orithms must be able to change rapidly according to the character-

stics of the data set, particularly the characteristics of null data. In

his study, we refer to this as an adaptive matching of classifier and

mputation (AMCI) method.

. Methods

.1. Overall architecture

Fig. 1 shows the overall architecture of the proposed method.

n phase one, missing data are generated arbitrarily by the MCAR

ethod (Wang et al., 2011) according to each missing ratio. All pairs

f algorithms perform the imputation and classification using the

enerated missing data. Then the meta-data, which includes char-

cteristics of the data set and the selected imputation-classification

ethod combination and is sensitive to the relative accuracy of the

lassifier, are accumulated in the case base as a case. In phase two, the

roposed algorithm finds the situated optimal classifier/imputation

ethod pair from a new set of data. By preprocessing the data set,

he algorithm identifies its characteristics and finds the best classi-

er/imputation method pair. If necessary, the results can be stored in

he case base as a new case.

.2. Data sets, classifiers, and imputation methods

To develop the adaptive pairing method and the relationships

mong data set features, classifiers, and imputation methods, we per-

ormed a pilot test with six data sets gathered from the UCI AI labo-

atory’s repository of benchmarked data sets (see Table 1). Because
he six data sets have no missing values, we created some null cells

ccording to a given missing ratio and including horizontal scatter-

ng, vertical scattering, and a certain level of spread to test the effects

f the imputation methods. In total, 500,000 varied data sets were

enerated.

As the first step in the pilot test, we observed the relationships be-

ween the input features and relative accuracy when applying classi-

ers and imputation methods. The input features considered in this

aper are shown in Table 2. Note that we disregarded the number

f instances and number of attributes as input features because they

ad no relationship with the performance of classification algorithms

n an earlier study (Kwon, 2013).

The next step was to determine the relative accuracy of the pro-

ess, after which we attempted to detect any causality within the data

et. As shown in Fig. 2(a), the degree of imbalance (D_imbalance)

eemed to be independent of the relative accuracy. The missing ra-

io and level of spread were associated negatively with relative accu-

acy; the greater the amount of null data or the level of spread, the

ore difficult it is to achieve relatively accurate estimations (Fig. 2(b)
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Fig. 2. Data set features and relative accuracy.
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and (e)). As shown in Fig. 2(c) and (d), the scattering seemed to be

unrelated to the relative accuracy. However, as shown in Fig. 3, we

also found that if we bipartitioned the results of horizontal and ver-

tical scattering based on the missing rate, the missing rate of both

subgroups was greater than 0.5. In both cases, horizontal and verti-

cal scattering were associated positively with relative accuracy only

when the missing ratio was greater than 0.5. These findings imply

that we need another input feature that combines horizontal and ver-

tical scattering. This will be addressed in the next section.

3.3. Adaptive matching of classifiers and imputation methods

The algorithm of matching in the AMCI consists of three phases:

[1] preprocessing the case base (Fig. 4); [2] reasoning the neighbor-

hoods (Fig. 5), and [3] identifying the optimal of classifier/imputation

method pair using Eq. (3). The process for each phase is outlined be-

low. Fig. 4 states the first phase, in which cases are preprocessed.

Our method uses primarily case-based reasoning to explore candi-

date pairs of imputation methods and classification algorithms and to

compute the similarity, imbalance rate, missing rate, and compound

metric of the degree of HS(v1), VS(v2), and spread(v3). To derive the

compound metric, we normalized the values of v1, v2, and v3 as:

x j = v j − m(v j)

M(v j) − m(v j)
(1)
here M(vj) and m(vj) indicate the maximum and minimum values

f all elements in vj, respectively. Then, the compound metric (cm) is

alculated as follows:

m =
√

x2
1

+ x2
2

+ x2
3

(2)

Next, using the imbalance rate, missing rate, and cm as input fea-

ures, and the pairs of classification algorithms and imputation meth-

ds (CLIM) as classes, the proposed method identifies a similar set

rom the case base (i.e., the number of neighbors); the number of

eighbors may vary.

As shown in Fig. 5, reasoning the neighborhoods is a form of case-

ased reasoning. The primary difference is that it selects M neighbors

mong the amended training cases (AC), in which the conceptual dis-

ance from the test case is shorter than in any other N-M cases. The

reater the value of M, the more likely it is that the performance mea-

ures (RMSE, AC) will improve. However, increasing the number of M

ould require more elapsed time, which then has a negative effect

n the scalability of the algorithm. The issue of scalability is of great

mportance, as the amount of training data is very large. Therefore,

he best M with respect to performance measures and elapsed time

ust be computed.

Identifying an optimal classifier/imputation pair from a set of

eighbors (NE) consists simply of selecting a pair in which the com-

ined value of RMSE and relative accuracy (RA) is higher than the
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Fig. 3. Scatterings and relative accuracy.

Input: training cases (TR )

Output: amended cases (AC)

Process:

Get meta data of case base;

Compute compound metric (cm) from horizontal scattering (v1), vertical scattering (v2), and 

level of spread (v3);

Newly develop amended cases (AC) using cm, imbalance ratio, and missing ratio as input 

features and CLIM, RMSE, and relative accuracy as classes;

Return AC ;

Fig. 4. Phase 1: Preprocessing Cases.

v

c

C

4

4

m

t

4

d

s

b

b

(

M

5

t

c

p

a

i

F

l

m

e

4

a

c

p

alues of any other neighbors. The combined value of RMSE and RA is

omputed as follows:

V = (1 − RMSE) + RA (3)

. Experiments

.1. Implementation

All experiments were performed in an implementation environ-

ent (see Table 3). The algorithms were developed as a Java applica-

ion using the Weka library.

.2. Data sets

Six data sets were used for classification. A description of each

ata set is provided in Table 1. The classification data sets were

elected from the UCI AI laboratory’s repository, which is accessi-

le at http://archive.ics.uci.edu/ml/. UCI benchmark data sets have

een widely used to test the new data mining algorithm or methods
Gao, Liu, Peng, & Jian, 2015; Xiang, Yu, & Kang, 2015; Zhang, Fang,

a, & Zhao, 2016). The number of instances varied from 150 (Iris) to

7,999 (Statlog), while the number of attributes varied from 4 (Iris)

o 60 (Sonar). Two datasets (Liber disorder, Ionosphere) were binary

lassification problems, while others were multiclass classification

roblems.

To quantify how missing data affected performances, we gener-

ted the following synthetic missing cells. First, we selected 18 miss-

ng instance ratios: 5%, 10%, 15%, 20%, 25%, 30%, ∼80%, 85%, and 90%.

or each missing data set, the cell that was located at a randomly se-

ected instance and its attribute were marked as missing. For each

issing ratio, we generated different missing data to ensure that the

xperimental results were statistically acceptable.

.3. Design

We tested the proposed method, adaptive matching of classifier

nd imputation (AMCI), against seven imputation methods and eight

lassification algorithms. To compare performance among the com-

eting methods, the same test data set was utilized in all methods for

http://archive.ics.uci.edu/ml/
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Fig. 5. Phase 2: Reasoning the neighborhoods.

Table 3

Implementation environment.

Category Description

Java SDK environment Version: 1.7

Classifier Using weka 3.7.2 release

Imputation algorithm implementation GROUP_MEAN_IMPUTATION Developed

MEAN_IMPUTATION

HOT_DECK

PREDICTIVE_MEAN_IMPUTATION Developed using regression library in Weka 3.7.2

kMEANS_CLUSTERING Developed using k-Means library in Weka 3.7.2

KNN Developed using kNN library in Weka 3.7.2

Proposed algorithm Developed
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each experiment. To generate data for performance of classification

algorithms, we adopted the Weka software tool release 3.7.2.

The experiment was iterated 8400 times with different random

sampling. For each experiment, out of 102,906 samples, 95% were

used randomly for training, and the remaining 5% were used to test

the methods. For experimental simulation, a Java application pro-

gram was developed.

We used two performance measures and the traditional accuracy

measurements. In the literature, overall performance was computed

using two global metrics: root mean squared error (RMSE) and rela-

tive accuracy (RA). RMSE is one of the most widely accepted metrics

for testing a classifier’s reasoning accuracy regardless of the type of

class (numeric or nominal) (Fire & Elovici, 2015). In addition, RA refers

to the ratio of the quotient of the observed result to the true value. RA

shows the accuracy and stability of the difference between the true

value and the estimated value provided by a classifier; it is also re-

lated to consistency (van Leeuwen & Cardinaels, 2015). RMSE and RA

can be computed as (4) and (5), respectively:

RMSE =
√∑

∀i

(yi − ŷi )
2
/N (4)

and

RA = ξ( j|S(i))/ξ( j|P) (5)

where ξ (j|S(i))indicates the overall accuracy of the classification algo-

rithm j when using the data set imputed by the imputation method, i,

and ξ (j|P)indicates the overall accuracy of the classification algorithm

j when using a perfect data set (P).

The proposed method (AMCI) was compared with two other

methods: best case and average case. Best case (BEST) indicates the

CLIM that shows the best performance in terms of RMSE and RA,

while average case indicates the average (AVERAGE) value of all

CLIMs. As we considered eight classification algorithms and seven

imputation methods, 56 CLIMs in total were evaluated and compared

to the proposed method.
.4. Overall results: comparison of all CLIMs

The proposed method is compared with a variety of conventional

ata mining algorithms such as J48, Bayes Net, SMO (Sequential Mini-

al Optimization), Regression, Logistic, IBk (Instance-Based k neigh-

ors), JRip (Repeated Incremental Pruning to Produce Error Reduc-

ion), and RBF (Radial Basis Function) Network. These should in-

rease the validity of the result of the experiment. They are available

n the open source data mining software WEKA (downloadable at

ttp://www.cs.waikato.ac.nz/ml/weka/). We show the results of the

valuation in terms of RMSE and RA in Tables 4 and 5, respectively.

ifty-six baseline approaches were included to compare performance

rom J48, Group Mean Imputation to RBFNetwork, KNN. For RMSE,

he hot deck imputation method is second to none among the im-

utation methods available. However, our proposed method (mean

0.272207, standard error = 0.028857) outperformed the best pair

BayesNet and hot deck method; mean = 0.281878, standard error =
.003480). Based on the value of the standard error, we concluded

hat further statistical comparison was not needed. As for RA, the

roup mean imputation method worked best when BayesNet, SMO,

egression, and RBFNetwork were selected as classifiers. When J48,

ogistic, IBK, and JRip were used, the hot deck imputation method

erformed better than the group mean imputation method. However,

he proposed method showed the best performance in terms of RA

mean = 0.879858, standard error = 0.083301). In summary, the pro-

osed method, AMCI, outperformed all other pairs of classifiers and

mputation methods when the pairs were applied constantly to all

ata sets regardless of characteristics of the data, such as rate of im-

alance, ratio of null data, and class.

.5. Results: RMSE

As the first efficiency test to compare the proposed method with

VERAGE and BEST—which consist of 56 pairs of classifiers and impu-

ation methods—assessment by RMSE was performed. RMSE for the

roposed method ranged from 0.2530 (number of neighbors = 100)

o 0.3435 (number of neighbors = 1). The RMSE of BEST and AVERAGE

ere approximately 0.2800 and 0.3400, respectively. The comparison

http://www.cs.waikato.ac.nz/ml/weka/
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Table 4

Performance comparison (RMSE).

J48 Bayes net SMO Regression Logistic IBK JRip RBF network

Group_Mean_Imputation 0.356591 0.309359 0.343969 0.320050 0.364371 0.346020 0.358097 0.329209

0.006165 0.006075 0.004079 0.003524 0.003773 0.003760 0.005787 0.006578

Likewise_Deletion 0.397702 0.413210 0.394057 0.385942 0.412258 0.416624 0.362461 0.382729

0.010202 0.005129 0.011740 0.014517 0.007545 0.006525 0.010916 0.014858

Mean_Imputation 0.354487 0.310060 0.343285 0.314655 0.321278 0.363741 0.334816 0.356787

0.006486 0.003408 0.004572 0.002889 0.002020 0.004096 0.005956 0.006404

Predictive_Mean_Imputation 0.353228 0.295936 0.361079 0.339308 0.349956 0.382560 0.327603 0.314058

0.007453 0.003681 0.004388 0.004310 0.003869 0.005010 0.004386 0.004559

Hot_Deck 0.311324 0.281878 0.325576 0.297620 0.301338 0.332451 0.301968 0.290486

0.004124 0.003480 0.002388 0.002703 0.003178 0.005507 0.004475 0.002827

k-Means_Clustering 0.361323 0.312874 0.340721 0.314721 0.324852 0.357812 0.334016 0.360273

0.004760 0.004739 0.002702 0.002933 0.001851 0.003862 0.004712 0.007063

k-NN 0.367720 0.310929 0.358374 0.327542 0.326594 0.391663 0.332802 0.345255

0.007731 0.005506 0.006125 0.002154 0.003829 0.005229 0.001632 0.005678

Proposed 0.272207

0.028857

Note. In each cell, upper and lower values indicate average and standard deviation, respectively.

Table 5

Performance comparison (RA).

J48 Bayes Net SMO Regression Logistic IBK JRip RBF network

Group_Mean_Imputation 0.797864 0.819528 0.771519 0.769424 0.768161 0.822462 0.775541 0.815556

0.007561 0.009134 0.006228 0.005467 0.004642 0.007214 0.008278 0.007532

Likewise_Deletion 0.605180 0.437839 0.586239 0.593827 0.615006 0.460395 0.605915 0.660473

0.038375 0.007948 0.021766 0.031800 0.029011 0.018158 0.032796 0.036940

Mean_Imputation 0.758118 0.722010 0.729093 0.749978 0.775583 0.773486 0.745613 0.717603

0.010556 0.012384 0.008643 0.005932 0.008515 0.009407 0.010883 0.013526

Predictive_Mean_Imputation 0.761350 0.754095 0.703034 0.726566 0.726512 0.759400 0.760016 0.771316

0.015391 0.017579 0.008888 0.008029 0.013440 0.009882 0.010179 0.011386

Hot_Deck 0.823016 0.770412 0.715117 0.740577 0.782080 0.829999 0.787352 0.807142

0.010726 0.021393 0.011654 0.012927 0.015046 0.009522 0.015400 0.010059

k-Means_Clustering 0.752997 0.729183 0.726600 0.752337 0.770295 0.781152 0.752209 0.715990

0.009641 0.012672 0.009051 0.009745 0.007808 0.009713 0.009246 0.013290

k-NN 0.737167 0.717503 0.710794 0.729881 0.747705 0.741664 0.741056 0.721692

0.012029 0.011768 0.013983 0.009430 0.010821 0.014871 0.008295 0.010977

Proposed 0.879858

0.083301

Note. In each cell, upper and lower values indicate average and standard deviation, respectively.
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Fig. 6. RMSE.
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ith BEST and AVERAGE is shown in Fig. 6. Hence, we can conclude

hat the proposed method was superior to BEST when the number

f neighbors was greater than a certain threshold (10 in this study)

nd that it always outperformed AVERAGE. Moreover, the RMSE of the

roposed method stabilized as the number of neighbors exceeded 20.

his implies that the number of neighbors need not increase to im-

rove performance; this is a good feature when scalability issues are

onsidered.
.6. Results: RA

In terms of RA, which is the ratio of the accuracy of the imputed

ata set and that of a perfect data set when the same classification al-

orithm is applied, the accuracy of the proposed method ranged from

.7339 to 0.9370, which was always superior to AVERAGE (approxi-

ately 0.7300; see Fig. 7). The proposed method outperformed BEST

hen we increased the number of neighbors to 10. The RA of the pro-

osed method also improved as the number of neighbors increased.

owever, the performance stabilized when the number of neighbors

xceeded 25, which also shows that the proposed method is scalable.

ote that no more than 25 neighbors needed to be collected. Thus,

he overconsumption of computation resources was reduced.

. Discussion and future work

In this study, we have proposed an adaptive algorithm to find the

est combination of classifier and imputation method on the basis of

he missing value characteristic of the target data set. Such an effort

f developing the proposed adaptive algorithm is significant in the

ig data application domains where target data sets are continuously

uffering from fast changing data structures, random occurrence of

issing values, and exponentially increasing data volumes. The typi-

al trends of the big data analysis are easily observed in the fields of

nternet of Things (IoT) and digital banking. Endlessly changing loca-

ions of users and things involved in those applications lead to the
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necessity with which we have successfully developed the proposed

AMCI method.

The main advantages of the proposed method over traditional

methods include the novelty in covering the patterns of imputation,

and the superiority in terms of scalability and reasoning accuracy.

First, our study, to the best of our knowledge, is the first to show

how the relationship among the characteristics of a data set, the

chosen imputation method, and the chosen classifier can affect clas-

sification performance in terms of overall accuracy. Many previous

researchers were unable to find a combination of classifier and im-

putation method that is always superior to other methods in all cases

and applications (Sim et al., 2015; Farhangfar, 2008; Kang, 2013). A lot

of studies test classifiers with multiple data sets assuming no missing

values; hence, the results of their works are not applicable in most

situations (Jones, Johnstone, & Wilson, 2015). Recent literature dis-

cusses the impact of the choice of imputation method on classifica-

tion performance. However, usually only one classifier is considered,

such as the nearest neighbor rule (Sarez et al., 2015; Jiang & Yang,

2015; Orczyk & Porwik, 2015) or genetic algorithms (Tran, Andreae, &

Zhang, 2015). Other studies explore a variety of classifiers to identify

the most appropriate solution to a specific pattern of missing values

(Xiao, Zhu, Teng, He, & Liu, 2014). Recently, Sim and Kwon (2015) find

a relationship between the performance of classifiers and data char-

acteristics. However, they did not mention how to cope with changes

in the combination. Based on the results of our study, the proposed

pairing of classifier–imputation method, AMCI, is very adaptive and

successful. Once the characteristics of a data set are identified, AMCI

adaptively selects the optimal combination of imputation and classi-

fication methods to ensure adequate performance. The results of our

experiments clearly show the superiority of the proposed adaptive

method compared to other methods of pairing classifiers and impu-

tation methods.

Secondly, our study is also the first to consider full-fledged char-

acteristics of the pattern of missing values. Basically, literature shows

that missing values patterns include a wide variety of ones such as

horizontal scattering, vertical scattering, level of spread, compound

metric, imbalance ratio and missing ratio. To the best of our knowl-

edge, there is no study proposing a combination of classifier and im-

putation method to tackle all the missing values patterns. The values

of our proposed method are therefore clear when considering other

works in which such an effort is not tried (Sarez et al., 2015; Jiang &

Yang, 2015; Orczyk & Porwik, 2015, Tran, 2015).
Thirdly, the proposed AMCI method is also scalable. Performance

n terms of RMSE and RA remained superior to other current meth-

ds regardless of the number of neighbors. The results indicate that

o increase in the computational effort required to select the opti-

al pair is necessary to improve the performance of the proposed

ethod. Hence, AMCI is very practical and usable in large data an-

lytic settings. Large data sets have high volume, high updating ve-

ocity, and/or may be incomplete due to the nature of the sources.

or example, the variety of social data from SNSs inevitably leads to

issing values, and data from sensory networks required to imple-

ent the Internet of Things architecture are notoriously unwieldy.

ue to the high volume and velocity of such data sets, scalable clas-

ification is definitely required. As for variety, large numbers of null

alues must be dealt with in order to maintain a satisfactory level

f reasoning accuracy. Hence, very rapid methods of finding optimal

airs from among every possible pair of classifiers and imputation

ethods in real time must be made possible and available. Based on

he results of our experiments, we posit that the proposed method

an also be applied in large data analytics.

In conclusion, we believe that our proposed AMCI method can

erve, in the field of real-time data anlaytics, as a valuable tool with

ppropriate accuracy, and reduced costs to work with. We know that

here exist a number of issues that need to be overcome in the future

tudies. Firstly, use of a real data set may strengthen the implications

f the results of the experiment. Secondly, though this study pro-

oses a core principle how to combine the classifiers and imputation

ethods, we still need to strengthen the adaptive pairing of classifier

nd imputation method so that the proposed method can be applied

ore actively to the real-time online big data applications (Jiang &

ang, 2015). Such a further study effort may be based on vouching

he valid significance of statistics for original population of data set

Carlin, 2002; Rubin, 1987). Finally, we need to consider the ensem-

le of the classifiers when selecting optimal combination with impu-

ation methods. A state of the art research is beneficial to such efforts

Orczyk & Porwik, 2015; Twala & Cartwright, 2005; Xiao et al., 2014).
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